# The evolution of galaxy habitability

## (fun with galaxy evolution models)

### R. Gobat, 홍성욱

#### The circumstellar habitable zone



### The galactic habitable zone





#### **Extension to galaxy populations**



#### Ingredients: star formation histories and GMF

Main sequence SFH

#### Observed galaxy mass functions



#### Ingredients: the stellar initial mass function (IMF)



 $\Rightarrow$  M/L, SFR, SN rates, metallicity, etc

### Ingredients: the stellar initial mass function (IMF)

#### $\log[\sigma_{\rm e}~({\rm km~s^{-1}})]$ Cappellari+ 2012 1.9 2.1 2.3 2.5 1.7 2.0 (M/L)<sub>stars</sub>/(M/L)<sub>Salp</sub> 1.5 1.0 0.5 No dark matter halo Best standard halo Best contracted halo 2.0 باسليتنا بتبا ب (M/L)<sub>stars</sub>/(M/L)<sub>Salp</sub> 1.5 1.0 0.5 Best general halo Fixed standard halo contracted halo Fixed 0.0 12 1 4 5 6 12 12 1 2 3 4 5 6 8 3 8 2 3 4 5 6 8 2 $(M/L)_{\rm stars} (M_{\odot}/L_{\odot})$ $(M/L)_{\rm stars} (M_{\odot}/L_{\odot})$ $(M/L)_{\rm stars} (M_{\odot}/L_{\odot})$

But there is evidence that the IMF varies

### Ingredients: integrated galactic IMF (IGIMF)



#### Ingredients: quenching and metal enrichment



#### Ingredients: morphological evolution

(e.g., van der Wel+ 2014)



transition to thin disk after peak SF (Lehnert+ 2014)

#### **Ingredients:** supernovae



#### **Ingredients: planetary distribution function**

$$f_{\text{Terrestrial}}(Z) = \begin{array}{l} 0.4 \times (Z/Z_{\odot})^{\alpha} & \text{case 1} \\ 0.4 - 0.03 \times (Z/Z_{\odot})^{\alpha} & \text{case 2} \end{array}$$

- + Cutoff at  $0.1 \times Z_{\odot}$  (e.g., Johnson & Li 15)
- + Habitable zone (Kopparapu+13)
- + main sequence stars with  $\geq 1$  Gyr (late heavy bombardment, etc.)
- + Orbital period distribution T<sup>- $\beta$ </sup>,  $\beta = 0.74$  (e.g.; Cumming+08, Bonavita+12)
- + stellar evolution prescription (Hurley, Pols & Tout 2000)

w<sub>h</sub>(m,Z,t) 
$$\propto f_{\rm T}(Z)$$
 H(1.5 - m)  $\int_{r_{h,i}(m,Z,t)}^{r_{h,o}(m,Z,t)} P(r,m)^{\beta_{\rm P}} \frac{\mathrm{d}P}{\mathrm{d}r} \mathrm{d}r$ 

#### **Galaxy habitability**



- total: plateau since z~1
- SF: leveling off at z~0.5

• maximum at ~4×10<sup>10</sup> M $_{\odot}$ 

effect of SN negligible

#### Ages of habitable planets



#### **Comparison with observations**

http://exoplanetarchive.ipac.caltech.edu



#### Ages of habitable planets



- variable delay time t<sub>min</sub>
- habitable for  $t > t_{min}$
- include { $r_{SN}$ =8 pc,  $t_{rec}$  = 50 Myr}

#### Ages of habitable planets



• include { $r_{SN}$ =8 pc,  $t_{rec}$  = 50 Myr}

#### **Some numbers**

(Gobat & Hong, A&A, 592, 96)

- 0.65-0.8% of stars can be expected to have a terrestrial planet in their HZ  $\Rightarrow \sim 2 \times 10^9$  in the Milky Way
- most habitable planets orbit K & M stars (caveat)
- median age of stars hosting habitable planets: 6 Gyr in disks
  9.5 Gyr in ETGs
- civilizations in the observable universe:  $N_{MW} \times 10^{9-0.22(\Delta t/Gyr)}$ ~10<sup>8</sup> if we are representative
- if we are unique in the MW:  $P_{us} < 7 \times 10^{-10}$

or ∆t > 8 Gyr

#### Thank you for your attention

and remember to check the planning office regularly.